
HAZARD ANALYSIS FOR INDUSTRIES THAT MANAGE RISKS RELATED TO CHEMICALS OR STORED ENERGY

Use Fault Tree Analysis When LOPA Fails

LOPA is Ubiquitous – but Simple...

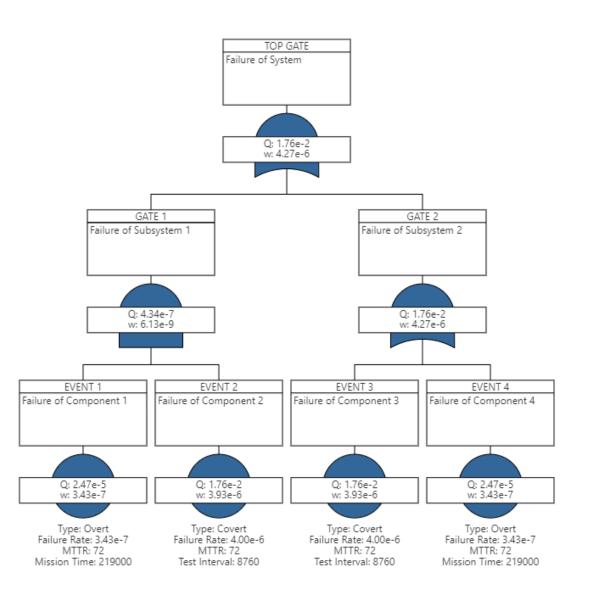
- Most Chemical Process Industries Companies Employ Layer of Protection Analysis (LOPA)
 - Assess Process Hazards Analysis (PHA) scenario in more detail
 - High consequence scenarios
 - Complex scenarios
 - Scenarios using safeguards that require quantitative performance targets
- Originally an order-of-magnitude technique
 - More than PHA, less and quantitative risk analysis (QRA)

- Focus on preventive safeguards that are entirely independent

LOPA Ineffective in Some Cases

- The simplifications in LOPA result in inaccurate estimate of risk
- Common Situations where LOPA fails
 - Initiating Event <u>IS</u> the loss of containment
 - Use of Consequence Mitigation is Primary/Important Risk Reduction
 - Intermittent/Batch Operation
 - Protection Layers Employ Common/Shared Subsystems
 - Extensive Human Interaction in Scenario (with Shared Hardware)
 - Complex Logic / Sequences
- Oversimplifications can lead to sub-optimal design

Consider Supplementing with Fault Tree Analysis

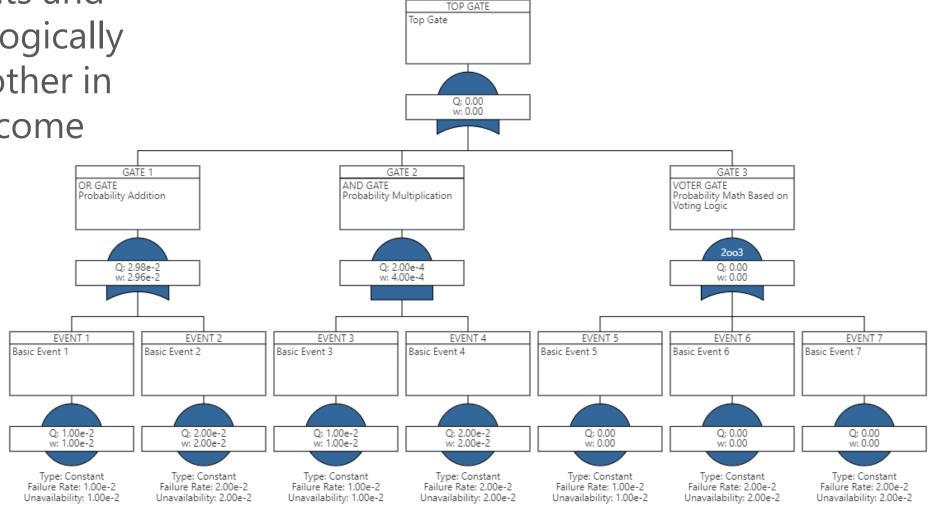


Fired Heater Fuel Gas Pressure Safety

								Consequences			
Deviation					TRAFT		Cau				
Deviation		Conseq	quence	S	TMEL Safety	Cause	Frequency IPLs			RRF Safety	
					-	Cuuse	Trequency	IPL	PFD		
1.1 High Pressure	1.1.1 Unstable combustion. Potential Loss of Flame with Continued Introduction of Fuel Gas. If ignited, potential firebox explosion. Potential Serious Injury.				 1E-4 1.1.1.1 Fuel Gas Control Loop Fails Valve Toward Open 		0.1	1 Operator Intervention Based on Alarm	0.1	10	
						Position		3 High Fuel Gas Pressure SIF	0.1		
1.2 Low Pressure	F	1.2.1 Unstable combustion. Potential Loss of Flame with Continued Introduction of Fuel			1E-3	1.2.1.1 Fuel Gas Control Loop Fails Valve	0.1	2 Operator Intervention Based on Alarm	0.1		
	Gas. If ignited, potential firebox explosion. Potential Serious Injury.				Toward Closed Position		4 Low Fuel Gas Pressure SIF	0.1		$\overline{\}$	
Contr Loop	-	Low Fuel Gas	High Fuel Gas	_	ow Fuel Pressur	High F re Gas Pre				+	
Transmi	•	Pressure Alarm	Pressure Alarm	Sh	od Vote)	Shutde	down	_	UZC		
PT-1	01	PT-102	PT-103	PT-1	104A,B	B,C PT-105	A,B,C				
								XV-21	'	XV-22	
el											
is		Ć) Transmit	:ter:	s? {	Seriously?!	!?!?		▋┝━┥┣	KENEXIS All Rights Reserve	S ed

Fault Tree Analysis

- More detailed assessment of events leading to loss of containment
- Capable of complex logic
- Elegant handling of shared components
- Calculates frequency of Top Event based on basic events and logic gates


Fault Tree Gates

- Define how events and lower gates are logically related to each other in defining the outcome
- Common Gates

- AND

- OR

- VOTE

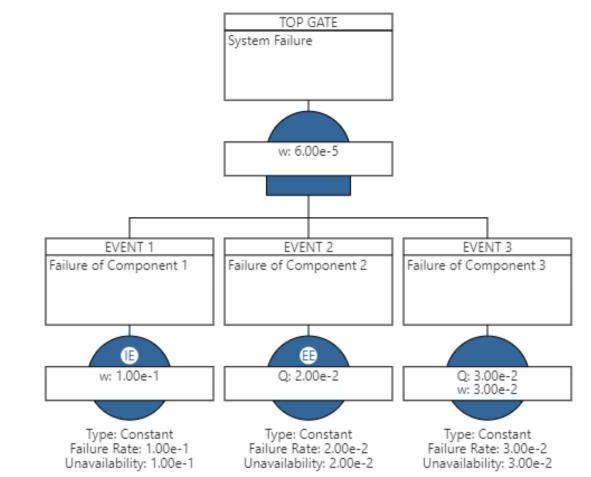
Basic Events

- Lowest Level
- Items that are not subdivided into smaller components
- Failure probabilities or failure rates are quantified
- House Events (True or False only)
- Failure Models
 - Overt
 - Covert
 - Constant

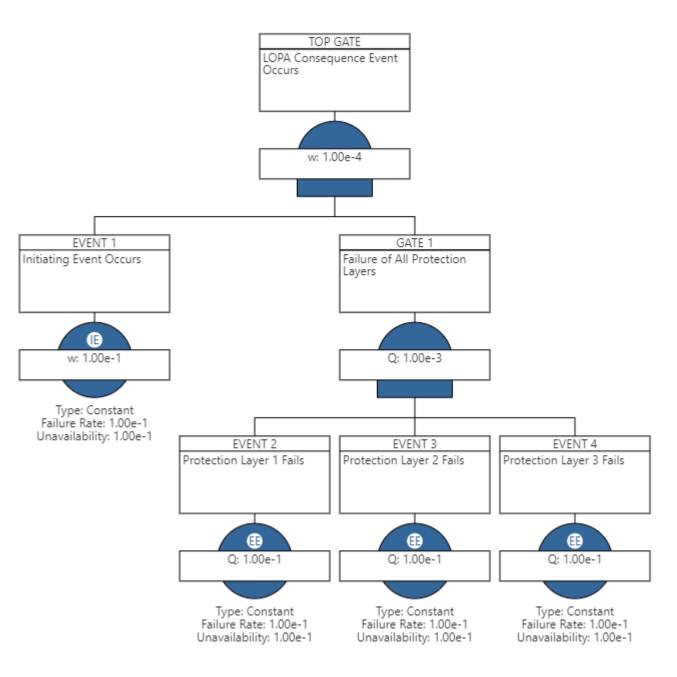
Event Mo	odel Details		Event Details	6
Title	Failure Model for Component		Title EVENT 1	
Description	Component Failure3 Model		Description Basic Event 1	
Туре	Covert	~)	i Initiating Ever	nt 🗌 🚺 Enabling Event 🕻
ailure Rate	0.1		Event Model Configur	ation
MTTR	72		Calculation Mode Use Event Model	~
st Interval	8760		SUse Event Model	
Notes			Notes	2
	Insert	Cancel	Color	Update
Event Mo	odel Details		Event Model Details	×
Title	Failure Model for Component		Title Failure Model for C	Component
Descriptior	Component Failure3 Model		Description Component Failure	e3 Model
Туре	e Overt	~	Type Constant	~
Failure Rate	0.1		Failure Rate 0.1	
MTTF	72		Unavailability 0.1	
			Notes	
lission Time	219000			

Insert

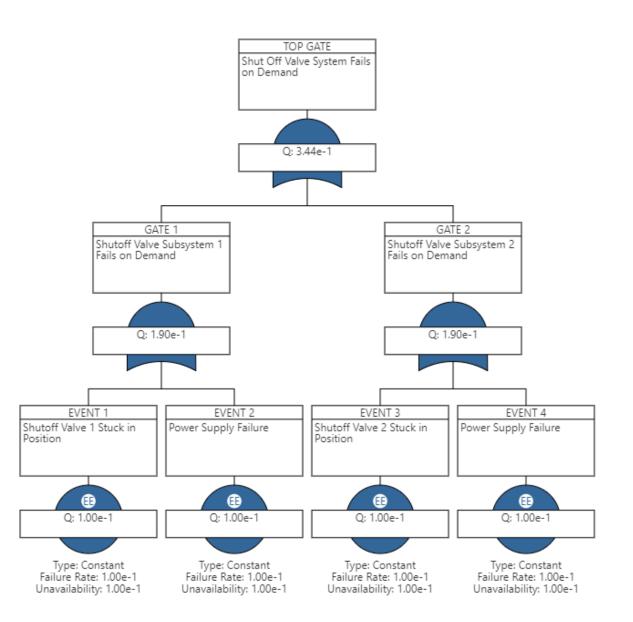
Cancel


Notes

Insert Cancel

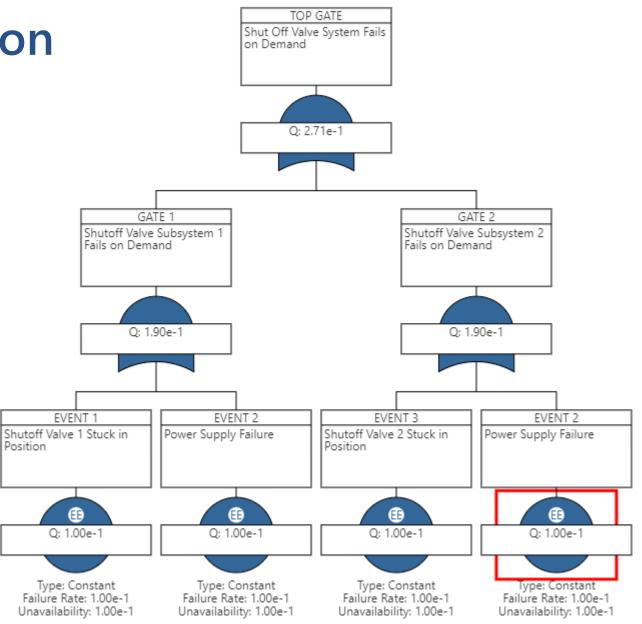

Fault Tree Sequencing

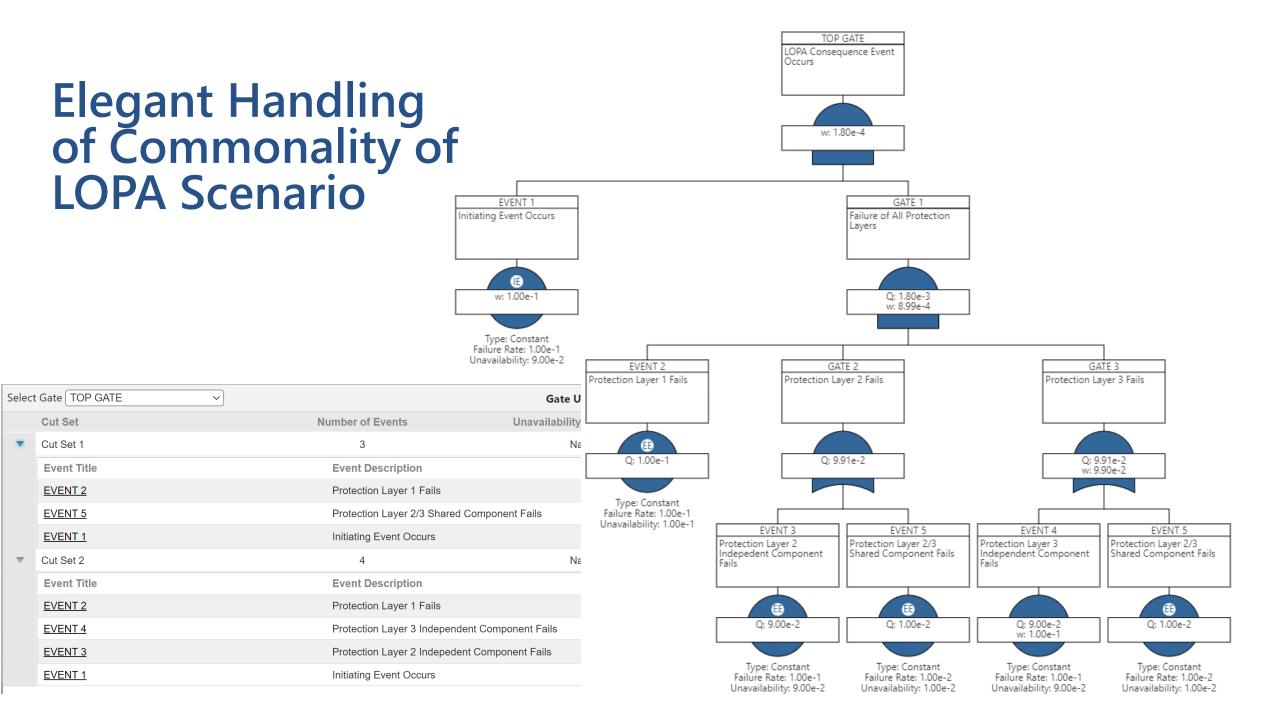
- Initiators
 - Events that start the failure chain
 - Quantified as frequencies only
- Enablers
 - Events that allow a failure chain to continue/propagate
 - Quantified as probabilities only
- Initiator or Enabler
 - Either starts or propagates failure chain
 - Frequency and Probability Quantified


LOPA as a Fault Tree

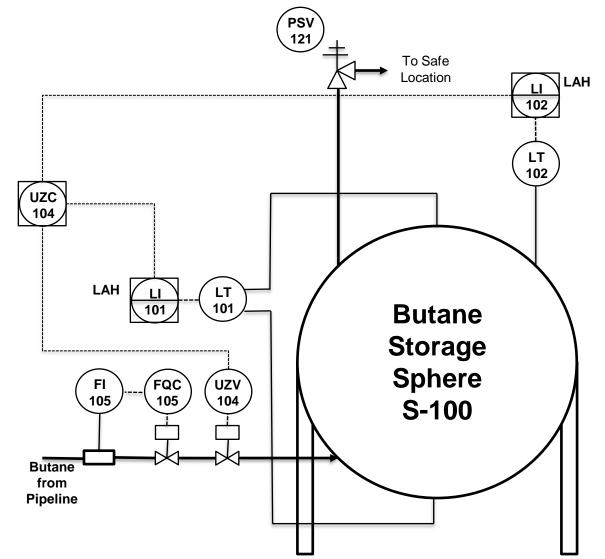
Fault Tree Solution

- Gate-by-Gate Solution
 - P(A or B) = P(A) + P(B) P(A and B)
 - Etc.
- Cut Set Solution
 - EVENT 1 or
 - EVENT 2 or
 - EVENT 3 or
 - EVENT 4




Minimal Cut Set Solution

- Generate
 Complete Cut Set
- Remove
 Duplicates
- Minimal Cut Set
 - EVENT 1 or
 - EVENT 2 or



Case Study – Butane Sphere Loading Overfill

- Butane sphere filled from pipeline
 - Amount calculated by operator based on LT-101 or LT-102
 - Amount input to totalizer controller FQC-105
 - If overfilled, alarms occur on LI-101 and LI-102
 - If LI-101 or LI-102 exceed their high-level trip point, an automatic shutoff occurs by closing UZV-104
 - PSV not sized for overfill

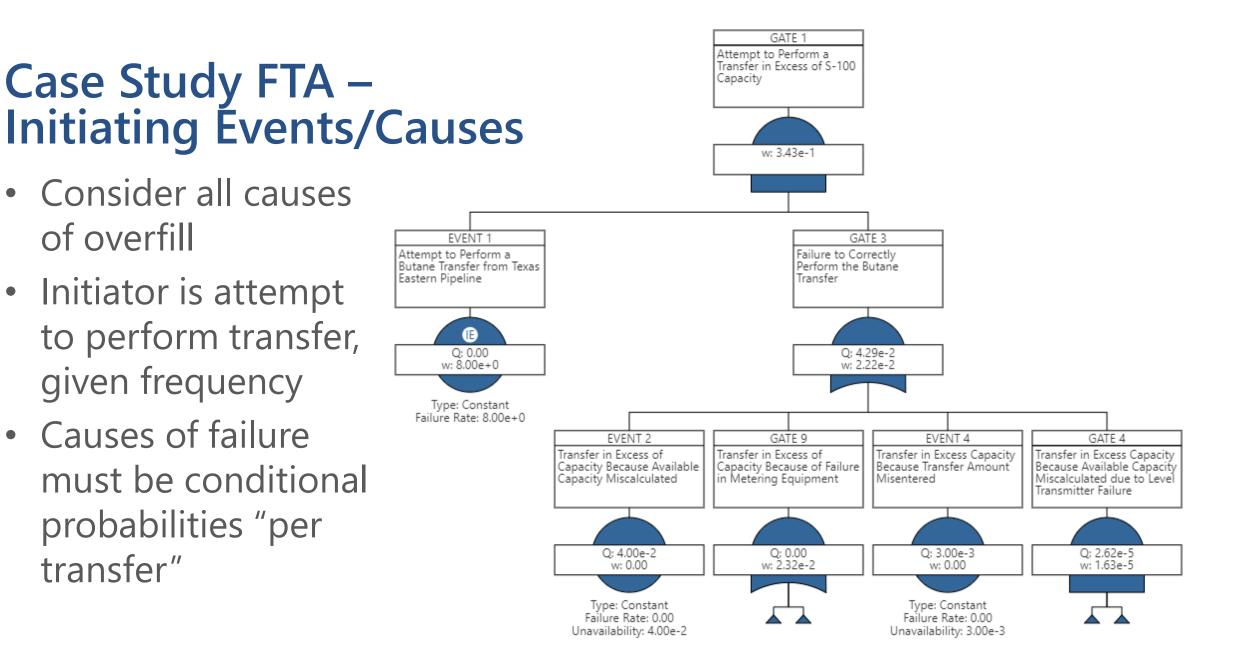
Case Study – First Pass LOPA Failure...

KENEXIS OPEN PHA										
🖺 🔒 Study	Data 🖗 Nodes 🛢 Deviations 🖓	HA Workshe	ets 🚺 LOPA W	orksheets 🕑 Check Lists		endations ① Safeguards	🖨 Parking Lot	😭 Risk C	Criteria 🗘 🌣 F	
LOPA Works	sheets									
1. Butane St	orage Sphere S-100									
€ 42 %	🗈 🖻 🔺 🗸 I Q Q I 🖨							00	🕑 ≓ Sear	
	Consequences									
Deviation						Causes				
Deviation	Consequence	S	TMEL Safety	Cause	Frequency	IPL	.s	R	RF Safety	
				Cause	Frequency	IPL	1	PFD KKF Sat		
1.1 High Level	1.1.1 Overpressure of Storage Sphere S-100 with Potential Loss of	Η Υ	1E-4	1.1.1.1 Failure of Filling Control Loop	0.1	1 Operator Intervention Ba 101	ased on LAH-	0.1	0	
	Mechanical Integrity and Rupture. Potential Vapor Cloud Explosion and/or Large Pool Fire					2 Operator Intervention Ba 102	ased on LAH-	0.1		
						3 High Level Shutdown Sat Instrumented Function (S	-	0.01		

Case Study – First Pass LOPA Failure...

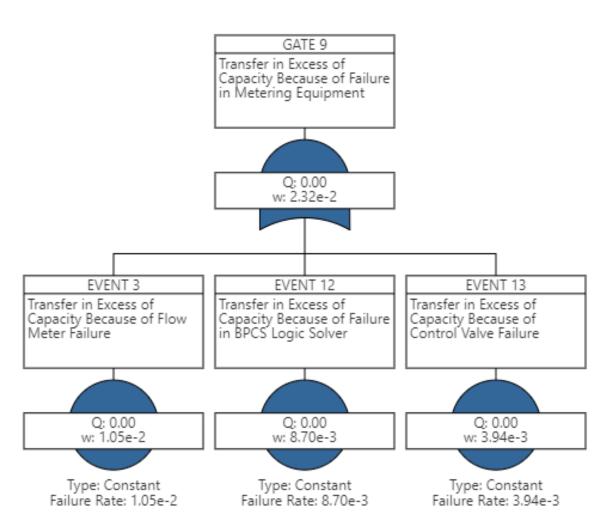
- Initiating event is more complex than control loop failure
 - Transfers are a batch operation that occur multiple times per year
 - Calculation of transfer amount is source of failure
 - Calculation error
 - Level measurement error
 - Control loop hardware failure can occur, but only an issue during transfer
 - Frequency of transfers drives the risk, more transfers = more risk
- Every protection layer shares components with other protection layers

Case Study – Second Attempt LOPA

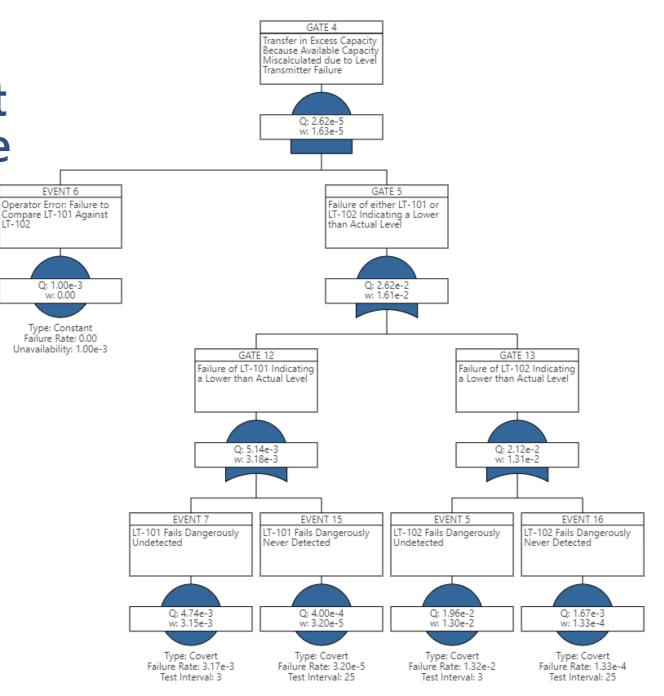

				Consequences					
Deviation	Consequence			Causes					
		S	TMEL Safety		-	IPLs	RRF Safety		
				Cause	Frequency	IPL	PFD		
1.1 High Level	1.1.1 Overpressure of Storage Sphere S-100 with Potential Loss of Mechanical Integrity and Rupture. Potential Vapor Cloud Explosion and/or Large Pool Fire	ΗŇ	/ 1E-4	1.1.1.1 Failure of Filling Control Loop while filling	0.1	1 Operator Intervention Based on LAH- 101	0.1		
						2 Operator Intervention Based on LAH- 102 - No Credit Taken, Common Operator	1		
						3 High Level Shutdown Safety Instrumented Function (SIL 2) - No Credit Taken, Common Level Sensor	1		
				1.1.1.2 Error in Calculating Fill Amount - 8 fills per year, 0.01 probability of failure per fill	0.08	4 Operator Intervention Based on LAH- 101 - No credit taken, not independent from amount calculation measurement	1		
						5 Operator Intervention Based on LAH- 102	0.1		
						3 High Level Shutdown Safety Instrumented Function (SIL 2) - No Credit Taken, Common Level Sensor	1		
				1.1.1.3 Error in Entering Fill Amount - 8 fills per year, 0.01 probability of failure per fill	0.08	1 Operator Intervention Based on LAH- 101	0.1		
						2 Operator Intervention Based on LAH- 102 - No Credit Taken, Common Operator	1		
						3 High Level Shutdown Safety Instrumented Function (SIL 2) - No Credit Taken, Common Level Sensor	1		

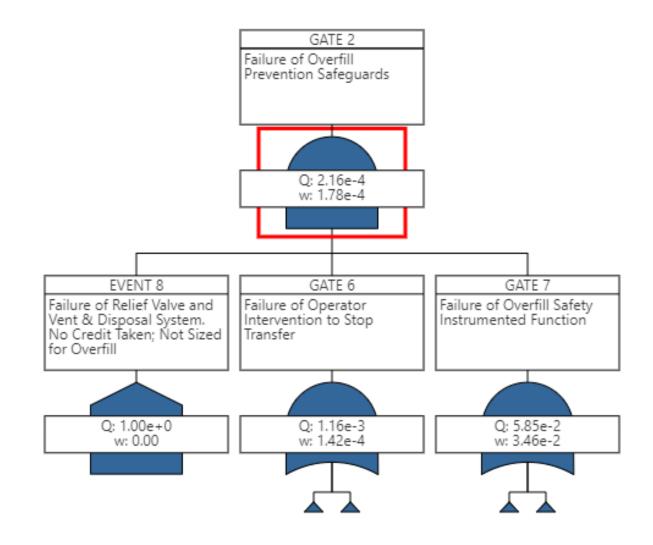
Case Study – Second Attempt LOPA

- Better, but still not good
- Analysis shows that more than two orders of magnitude of risk reduction are still required
- Recommendations might include
 - Include a dedicated measurement of level for control/calculation purposes
 - Include two new dedicated level measurements for the Safety Instrumented Function
 - This could result in 5 different level measurements on the vessel... Is 5 transmitters that much better than two???



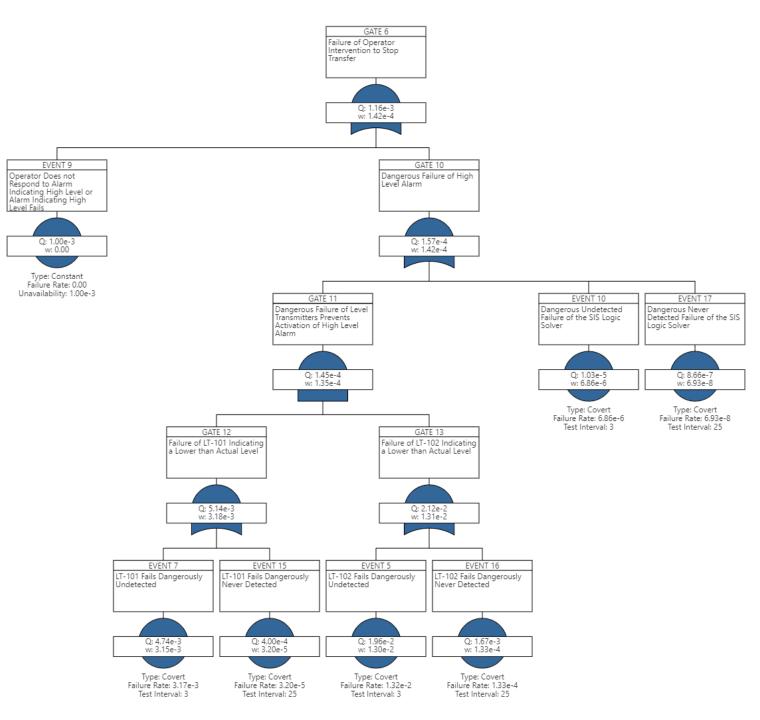
Case Study FTA – Failed Metering Equipment


- Calculation of Failure Probability Must Consider Testing
 - Is the control loop testing before each transfer?
 - If so, the "mission time" is only the duration of the transfer, not the test interval
 - Otherwise, use traditional test interval



Case Study FTA – Miscalculation of Amount Due to Transmitter Failure

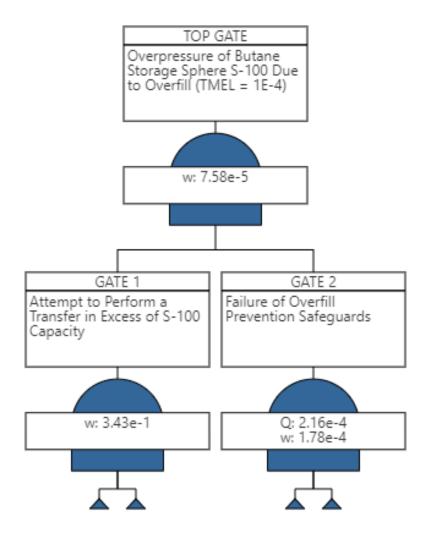
- Transmitter failure events are considered in multiple locations
 - Measurement for calculation of transfer amount (shown here)
 - Operator response to alarm
 - Safety instrumented function effectiveness


Case Study FTA – Failure of Safeguards



Case Study FTA – Failure of Operator Intervention

- Separation of operator action from equipment failure
- Equipment failure is the same event structure as for miscalculation for sensors



Case Study FTA Overall Results

- Overpressure (top event) occurs if excess butane is attempted to be transferred and all safeguards fail
- Tolerable risk is achieved with existing design after more sophisticated analysis

- LOPA is ubiquitous, but simplifications sometimes prevent accurate calculation of actual risk
 - Potential for poor design recommendations
 - Potential for overdesign and high cost (CAPEX and OPEX)
- When LOPA provides questionable results investigate cause
 - Inability to consider protection layers with common equipment
 - Complexity of scenario requires simplification
- Supplement LOPA with FTA to address identified shortcomings

Thank you...

Figures created using Kenexis Open PHA and Kenexis Arbor Software...

